Question	Answer		Mark
Number			
1(a)	Statement showing that the candidate has realised that this graph is of length		
	and not extension	(1)	
	[e.g. subtract starting length for extension		
	this graph is for length not extension		
	the spring has a length between 2.0 and 3.0cm		
	if the line (for this graph) had passed through the origin then the spring would		
	not have any length]		
	(To obey Hooke's law) Force x extension		
	\mathbf{Or} extension v force (or vice-versa) graph should go through the origin	(1)	2
1(b)	Use of $F = k\Lambda r$	(1)	<u> </u>
1(0)		(1)	
	Either evidence of attempt at gradient with sensible values that could have		
	been obtained from the graph or selection of a pair of values and the original		
	length, 2.5 cm (accept range from 2.0 to 3.0 cm) subtracted from the length]		
	$L = 27 - 20 \text{ (N m^{-1})}$		
	k = 27 - 29 (N m)	(1)	2
	Example of calculation		
	$K = \frac{\Delta F}{M} = -27.68 \text{ N m}^{-1}$		
	K = Ax = A		
1(c)(i)	$U_{n} = \int \frac{1}{2} E \Delta x \mathbf{O} \mathbf{r} \text{use} = \int \frac{1}{2} \frac{1}{k} \Delta x^2$	(1)	
	$\int \frac{1}{2} F \Delta x = 0 \text{is of } \frac{1}{2} K \Delta x$	(1)	
	[Anow I' = 5.7 to 5.7 N] Energy = 0.50(I)	(1)	2
	Energy $= 0.39(3)$	(1)	2
	Example of calculation		
	Energy $-\frac{1}{2} \times 5.8 \text{ N} \times (0.23 \text{ m} - 0.025 \text{ m}) = 0.59 \text{ J}$		
	Or		
	Energy = $\frac{1}{2} kAx^2 = \frac{1}{2} \times 27.68 \text{ N m}^{-1} \times (0.23 \text{ m} - 0.025 \text{ m})^2 = 0.59 \text{ (J)}$		
1(c)(ii)	energy stored \rightarrow gpe Or energy stored = mgh seen or substituted into	(1)	
	Use of stored energy $= mgh$	(1)	
	height = 12 m	(1)	3
	Example of calculation		
	$0.59 \text{ J} = 0.005 \text{ kg} \times 9.81 \text{ m s}^{-2} \times h$		
	h = 12.0 m		

Question	Answer	Mark
Number		
2 (a)(i)	Straight line shown / constant gradient (1)	
	(So) extension or change in length proportional to force (accept Δx or Δl	
	or <i>e</i> proportional to <i>F</i>) / <i>k</i> constant. (NOT Length α force) (1)	
	[Just stating $F = k\Delta x$ does not get the mark]	2
	(Yes, because extension or change in length proportional to force gets 2)	
2(a)(ii)	Indication of use of (inverse) gradient, e.g. $k = F/\Delta x$ or with values	
	obtainable from graph (accept extension/force for first mark) (1)	
	Substitution of values as force/extension (1)	
	Stiffness = 0.66 to 0.80 (N m^{-1}) [no ue] (1)	3
	Range is due to tolerance of + or - half a square on reading graph.	
	[Allow answers of 0.7 N m ⁻¹ or 0.8 N m ⁻¹ without extra sig fig if that is the	
	exact value produced from their figures, e.g. from F = 0.7 N, where	
	length = 260 cm]	
	Example of calculation	
	$k = F/\Delta x$	
	k = 0.8 N / (2.7 m - 1.6 m)	
	k = 0.8 N / 1.1 m	
	$= 0.73 \text{ N m}^{-1}$	
	(Read graph to half a square)	
2(a)(iii)	Use of $E = \frac{1}{2} F\Delta x = \frac{1}{2} k(\Delta x)^2$ OR Use of an area between a line and an	
	axis (allow line shown and force axis) (1)	
	Identify correct extension OR correct area (1)	
	E = 0.31 J to 0.35 J from $E = \frac{1}{2} F \Delta x$	
	E = 0.27 J to 0.40 J from $\frac{1}{2} k(\Delta x)^2$ if k in range [allow ecf for k] (1)	3
	Example of calculation	
	$\overline{E} = 1/2 F \Delta x$	
	$= 0.5 \times 0.7 \text{ N} \times (2.55 \text{ m} - 1.6 \text{ m})$	
	= 0.33 I	
2(b)(i)	Coils at top support coils below (1)	
-()(.)	(So) a greater force acts (on top coils) (1)	2
	Coils at the top support the weight of the coils below as well = 2 marks	
2 (b)(ii)	Clearly below centre and above bottom - accept if no label (1)	1
2 (b)(iii)	(QWC - Work must be clear and organised in a logical manner using	
(1)*	technical wording where appropriate)	
	Ball acted on by its weight (alone) / by gravity (alone) (1)	
	Top coils acted on by their weight and/also acted on by	
	elastic/tension force / force due to extension of coils (1)	
	So the acceleration is greater (1)	
	Energy explanation - max 2	3
	for ball, transfer to ke from gpe alone - 1 mark	
	for top coils, transfer to ke from gpe and elastic pe - 1 mark	
	(allow 'has' energy instead of transfer to ke)	
2(b)(iii)	They are acted on by weight downwards and (elastic) force upwards/	
(2)	the forces on them are/remain balanced (1)	1
	Total for question	15

Question	Answer	Mark
	Eveloin the change of the graph in the point labelled AD	
3(a) (l)	Explain the snape of the graph in the part labelled AB	
	Force propertional to extension (above Heake's law (1)	1
2(0)	Fullein what is happening in the part of the graph labelled CD	1
3 (a)	Explain what is happening in the part of the graph labelled CD.	
(1)	Fully compressed / calls closed (accent cup/bug/tay tayshes base) (1)	1
	runy compressed / cons closed (accept cup/bug/toy touches base) (1)	I
3(b)	Show that the stiffness of the spring is about 1000 N m ⁻¹	
- ()		
	State k = 1/gradient or use of values in $k = F / x$ (1)	
	Correct answer to at least 2 s.f. [1100 N m ⁻¹] (1)	2
	(Values from graph must be within half a square)	
	(Accept 1000 N m ⁻¹ to only 1 s.f. if the answer given by the values	
	used from the graph is 1.0×10^3 N m ⁻¹ to 2 s.f.)	
	Example of calculation	
	k = F / x	
	= 20 N / 0.019 m	
	$= 1050 \text{ N m}^{-1}$	
3(c) (i)	Calculate the energy stored in the spring at this stage	
	State area under graph or use of energy = $1/2 F \Delta x$ or state energy =	
	$1/2 kx^{2}$ (1)	
	correct answer [0.17 J] (1) [ecf for k]	2
	(Values from graph must be within half a square)	
	Evenue of colouistics	
	Example of calculation	
	energy = $1/2 F \Delta x$	
	= 1/2 x 19.2 N x 0.018 m	
	= 0.17 J	

3(c) (ii)	Calculate the maximum height reached by the bug. Use of $gpe = mgh(1)$	
	correct answer [2.4 m] (1) [ecf]	
	Example of calculation	2
	0.17 J = mgh	
	$h = 0.1 / \text{ m} / 1.3 \times 10^{-3} \text{ kg} \times 9.81 \text{ N kg}^{-1}$ = 2.4 m	
3 (c)	State an assumption made in your calculation	
(iii)		
	all elastic pe \rightarrow ke of bug \rightarrow gpe of bug (2 out of 3) /	
	all stored energy (of the spring) transferred to the 'toy' /	
	no energy lost due to air resistance (1)	1
3(d)	Explain the advantage of using the video camera	
	improves accuracy/reliability/precision (1)	
	eliminate reaction time in looking / can slow down and stop (to take	
	reading) etc (1)	2
3 (e)	Comment on this data	
	Has not included 0.26 (has not included the anomalous result (
	$\int as not included 0.30 / has not included the anomalous result / 0.36 is anomalous /outlier etc. (1)$	1
	Total for question	12
		12

Question			Mark
Number			
4(a)	(The line) AB (extended)does not pass through the origin /initially		
	Or the graph is curved as it passes through the origin		
	Or the graph (before A) is not a straight line through the origin.	(1)	
	The device does not obey Hooke's law (conditional mark)	(1)	2
4(b) (i)	Reference to finding area	(1)	
	Detail		
	count squares		
	OR approximate the shape of the graph to a triangle		
	Or reference to using a trapezium(could be described as		
	rectangles and triangles)	(1)	2
4 (b) (ii)	Identifies that force is the problem.	(1)	
	Explains why force used is an overestimate		
	e.g. maximum force has been used (each time)		
	Or average force was not used (each time)		
	Or the force is changing (continuously)		
	Or should have used the trapezium rule	(1)	•
	Or area of rectangle has been used	(1)	2
4(c)	Use of 25% of 540 kJ i.e. find the energy to be used	(1)	
	Use of total available energy (either 540 000 J or 135 000 J)		
	energy per stretch or energy per unit time	(1)	
	Time = 612 min	(1)	3
		(1)	5
	Example of calculation		
	$540\ 000\ J \ge 25\% = 135\ 000\ J$		
	$135\ 000\ J/14.7\ J = 9184\ stretches$		
	9184 / 15 stretches per minute = 612 minutes (36 / 20 s Or 10.2		
4(d)	smaller extension Or will not stretch as much	(1)	
	less work with reference to either same force applied Or to work	(*)	
	done being force x extension	(1)	2
	(Do not accept displacement or distance in place of extension for		
	MP1or MP2)		
	Total for question		11

Question	Answer		Mark
Number			
*5(a	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	Measure the initial length (of the spring) Or record position of a 'fixed point' Or record the position of the bottom of the spring (with no masses on the spring)	(1)	
	masses on the spring)	(1)	
	Add mass/weight and record the new length/position	(1)	
	Repeat for a range of masses/weights	(1)	
	Reference to a precaution taken to ensure measurements were accurate		
	e.g. use of set square, method to reduce parallax, hang spring close to		
	rule, do not exceed proportional/elastic limit	(1)	4
5(b)	Plot appropriate graph of extension/length and force/mass	(1)	
	Calculate the gradient (of linear region)	(1)	
	A survey with a lot findle from the interact	(1)	2
	Appropriate method to find k from their graph	(1)	3
	(Max 1 if no graph is suggested i.e. use $k = F/\Delta x$ and average k)		
5(c)	k would not be constant for the spring		
	Or the graph would not be a straight line		
	Or the idea that Hooke's law would not be obeyed		
	Or $F = k$ (Δ) x does not apply	(1)	1
	Total for Question		8